Graphene: The Future is here!!
Stronger than steel, thinner than paper, graphene could be the future of Science.
Graphene possesses other amazing characteristics: Its high electron mobility is 100x faster than silicon; it conducts heat 2x better than diamond; its electrical conductivity is 13x better than copper; it absorbs only 2.3% of reflecting light; it is impervious so that even the smallest atom (helium) can’t pass through a defect-free monolayer graphene sheet; and its high surface area of 2630 square meters per gram means that with less than 3 grams you could cover an entire soccer field (well, practically speaking you would need 6 grams, since 2630 m2/g is the surface area for both sides of a graphene sheet).
Graphene’s remarkable conductivity, strength and elasticity has also made it a promising choice for stretchable electronics – a technology that aims to produce circuits on flexible plastic substrates for applications like bendable solar cells or robotic-like artificial skin.
Graphene is a two-dimensional carbon allotrope with the carbon atoms arranged in a two-dimensional honeycomb lattice. It was first isolated in 2004 and is an extremely thin material along with being flexible and transparent.
It is one of the strongest materials at present and the carbon arrangement provides it with attractive and unusual characteristics. Due to these reasons, it is one of the most promising nanomaterials and is being considered in a wide range of applications ranging from optics to electronics.
The authors note, however, that before graphene-based nanomaterials and devices find widespread commercial use, two important problems have to be solved: one is the preparation of graphene-based nanomaterials with well-defined structures, and the other is the controllable fabrication of these materials into functional devices.
Graphene is the basic building block for other graphitic materials; it also represents a conceptually new class of materials that are only one atom thick, so-called two-dimensional (2D) materials (they are called 2D because they extends in only two dimensions: length and width; as the material is only one atom thick, the third dimension, height, is considered to be zero).
Due to the strong bonds and unbroken pattern between the carbon atoms, graphene is considered the strongest material at present. As charge carriers in graphene have small effective mass; they have attractive electrical and thermal properties with respect to electronic devices.
The electrical properties include optical transparency, high current-carrying capability and high carrier mobility or velocity. The thermal properties include high thermal conductivity and high mechanical strength. Graphene conducts electricity with electrons moving significantly faster than silicon with fewer interruptions. It is also an excellent heat conductor and is conductive independent of the temperature present. The two-dimensional structure of graphene improves the electrostatics required for transistors. By weight, graphene is stronger than steel.
POTENTIALÂ APPLICATIONS:
The impressive intrinsic mechanical properties of graphene, its stiffness, strength and toughness, are one of the reasons that make graphene stand out both as an individual material and as a reinforcing agent in composites. They are caused by the stability of the sp2Â bonds that form the hexagonal lattice and oppose a variety of in-plane deformations.
Comments